Best Proximity Point Results For Multivalued Cyclic Mappings On Partial Metric Spaces

نویسندگان

چکیده

Let ∅≠Ŕ,Ś be subsets of a partial metric space (Ω,ϑ) and Ψ:Ŕ→Ś mapping. If Ŕ∩Ś=∅, it cannot have solution equation Ψς=ς for some ς∈Ŕ. Hence, is sensible to investigate if there point ἣ satisfying ϑ(ἣ,Ψἣ)=ϑ(Ŕ,Ś) which called best proximity point. In this paper, we first introduce concept Hausdorff cyclic mapping pair. Then, revise the definition 0-boundedly compact on spaces. After that, give results these mappings. Hene, our combine, generalize extend many fixed theorems in literature as properly. Moreover, comparative illustrative example demonstrate effectiveness has been presented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On best proximity points for multivalued cyclic $F$-contraction mappings

In this paper, we establish and prove the existence of best proximity points for multivalued cyclic $F$- contraction mappings in complete metric spaces. Our results improve and extend various results in literature.

متن کامل

on best proximity points for multivalued cyclic $f$-contraction mappings

in this paper, we establish and prove the existence of best proximity points for multivalued cyclic $f$- contraction mappings in complete metric spaces. our results improve and extend various results in literature.

متن کامل

Coincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces

We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al cite{Gabeleh}. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings ...

متن کامل

New best proximity point results in G-metric space

Best approximation results provide an approximate solution to the fixed point equation $Tx=x$, when the non-self mapping $T$ has no fixed point. In particular, a well-known best approximation theorem, due to Fan cite{5}, asserts that if $K$ is a nonempty compact convex subset of a Hausdorff locally convex topological vector space $E$ and $T:Krightarrow E$ is a continuous mapping, then there exi...

متن کامل

Best proximity point results for generalized contractions in metric spaces

*Correspondence: [email protected] 3Department of Mathematics, GDCW, Bosan Road, Multan, Pakistan Full list of author information is available at the end of the article Abstract In this paper, we first introduce a cyclic generalized contraction map in metric spaces and give an existence result for a best proximity point of such mappings in the setting of a uniformly convex Banach space. Then we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Gazi university journal of science

سال: 2022

ISSN: ['2147-1762']

DOI: https://doi.org/10.35378/gujs.815957